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Abstract. The solution of several open problems connected with the generalised Bessel 
polynomials, which appear in solving the wave equation in spherical coordinates and in 
network synthesis and design, is shown. In particular, explicit and simple recursion 
formulae for sums of powers and product sums of the zeros of these polynomials are found. 
Also, three different sets of sums of generalised Bessel polynomials are analytically 
evaluated in a compact way. 

1. Introduction 

The Bessel polynomials appeared in the early thirties (Bochner 1929, Burchnall and 
Chaundy 1931) as the fourth class of orthogonal polynomials satisfying a second-order 
differential equation, the others being the classical systems of Jacobi, Laguerre and 
Hermite. However, the first systematic study of their properties was not done till 
twenty years later (Krall and Frink 1949) in connection with the solution of the wave 
equation in spherical coordinates. Shortly afterwards it was realised (Thomson 1949, 
1952) the important role which these polynomials play in the theory of networks so 
that today they can be found not only in advanced articles (see e.g. Marshak et a1 
1974, Johnson eta1 1976) but also in textbooks (Guillemin 1958, Hazony 1963, Weinberg 
1975) of network synthesis and design. For more information and details about the 
Bessel polynomials and its applications see the excellent monograph (Grosswald 1978). 

Here it is our purpose to show the solution of the following open problems of the 
Generalised Bessel Polynomials (GBP’S) y n ( x  ; a, b) .  

(i)  To find explicit formulae for the Newton sums s, r = 1,2, .  . . of y, (x ;  a, b ) ,  that 
is for the rth power sum symmetric functions or just sums of rth powers of the zeros 
of the polynomial y, (x ;  a, b ) .  

(ii) To find simple recurrence relations for the sums s, 
( i i i )  To obtain explicit expressions for the so-called homogeneous product sum 

(iv) To derive new partial sums of GBP’S in an analytical way. 
The first two problems are explicitly pointed out by Grosswald (1978). They involve 

the quantities s, which when conveniently normalised represent the moments about 
the origin of the distribution density of zeros of the polynomial y , ( x ;  a, b) .  

The structure of the paper is as follows. In 3 2 we briefly summarise the definition 
and the properties of the GBP’S which are needed for our discussion. The following 

symmetric functions h, r = 1,2, . . . of the zeros of the polynomial y n ( x ;  a, b ) .  
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section contains the solutions and proofs of the first two problems, that is those which 
involve the most useful and elementary sum rules of the zeros of the polynomial 
y , ( x ;  a, b) .  Section 4 is devoted to problem (iii), then to the more complicated sum 
rules of zeros h, Finally in 0 5 problem (iv) is considered. In particular three different 
sets of formulae for some partial sums of GBP'S are developed. 

2. Review 

The GBP y , ( x ;  a, b )  was defined (Krall and Frink 1949) as the polynomial solution of 
the differential equation 

x2-v"+( ax  + b ) y ' -  n (  n + a  - 1)y = 0, b#O,a#O,- l , -2  , . . .  . ( 1 )  

Since y , (bx ;  a, b )  is independent of b, it turns out that b is only a scale factor for 
the independent variable and not an essential parameter. This is why some authors 
prefer to use the polynomials y n ( x ;  u ) = y n ( x ;  a,2)  or even Y ? ) ( x ) = y , , ( x ;  a +2,2)  
so that y , , ( x ;  2) = Yio'(x) = y , ( x ) ,  the ordinary Bessel polynomial (Grosswald 1978, 
Chihara 1978). 

The explicit expression of the GBP y , ( x ;  a, 6)  is (Grosswald 1978) 

Here we have used the notation 

u ( i )  = u ( u -  l ) (u -2 ) .  . . ( u - i + l ) ,  j2 1, U(')= 1. 

In addition the GBP'S satisfy the three-term recursion relation (Krall and Frink 1949) 

( n  + a  - 1)(2n + a  - 2 ) y , + ,  

= [ ( 2 n + a ) ( 2 n + a - 2 ) ( x / b ) + a - 2 ] ( 2 n  +a- l )y ,  

+n(2n + a ) y n - , ,  n 2 2 ,  

with the initial conditions y o ( x ) =  1 and y l ( x )  = 1 + a ( x / b ) .  

3. Sum rules of zeros s, 

Let us denote by s, the sums of the rth power of the zeros { x I , x 2 ,  
polynomial y , ( x ;  a, b ) ,  i.e. 

n 

sr = c x:, r = 1 , 2 ,  . . .  . 
" = I  

The explicit expression of s, in terms of a and b turns out to be 

(-1 +Zh) ! r  fi ( (-b) 'n( ')  
s r =  C(-l)r-Z'  

( A )  A , ! h Z ! . . . h n ! I = I  i ! (2n+a-2)")  

, .  

(3 )  

, x n }  of the 

(4) 

where Zh =.Cy=, hi, and the summation I;(') runs over all the partitions ( A , ,  h2, . . . , A,) 
of the number r so that Zy=, ihi = r. 
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Furthermore we will show that the quantities s, satisfy the simple recurrence relation 

with the initial condition s1 = -bn/(2n + a  -2). 

authors (Grosswald 1978). In particular the first few sums are 
From equations (4) or ( 5 ) ,  one can find a number of results encountered by different 

s2 = b2n(n + a  -2)/(2n + a  -3)(2n + a  -2)', 

s3 = -b3n(a - 2 ) ( n  + a  -2)/(2n + a  -2)3(2n + a  -3)(2n + a  -4), 

b4n(n + a - 2 )  
( 2 n + ~ - 2 ) ~ ( 2 n  + ~ - 3 ) ~ ( 2 n + a - 4 )  

sq = [ (a3-7a2+16a-  12)+(a2-2a)n 

+(8-3a)n2-2n3]. 

From (4) one can easily see that, for ordinary Bessel polynomials, the sum S2k+l  = 0 
for ks 1 as was pointed out by Ismail and Kelker (1976). Notice from the same 
equation that the quantities s,/ n for n + co and r = 1,2, . . . vanish as it is also known 
(Dehesa 1978). 

To prove (3) we will use the following result (Raghavacharyulu and Tekumalla 
1972). 

Let P n ( x )  be the polynomial 
n 

P n ( x ) =  1 (-l) iatxn-i ,  with a o =  1. 
I =o 

then 

s,= 1 (-l)r-'A(-l +ZA)!r fi ($) 
( A )  i =  I 

(7) 

where all the symbols are as before. The comparison between (2) and (6) allows one 
to write 

Taking this value to equation (6) one immediately finds the required equation (4). 
To prove (5) we will use a different procedure. We will not start from the explicit 

expression of the polynomials but from the differential equation fulfilled by them and 
the following general result (Case 1980) will be used. Let us assume the polynomials 
P , , ( x )  satisfy a second-order differential equation of the form 

( 9 )  g * ( x ) P X x )  + g l ( x ) P ' , ( x )  + g o ( x ) P n ( x )  = 0 

where 
I 

g A x )  = c a;')?, i = O ,  1,2, .  . . (10) 
J = o  

with constant coefficients a;f). Assuming further that the zeros of P n ( x )  are simple, 
then the recurrence relation is fulfilled 

( 1  1 )  2[Ub*'J, +aj29,+, +a:2)J,+2] = -aY)s, - a(ll)s,+I, r = 0, 1,2, . . . 



2762 F Galvez  and J S Dehesa 

with the initial condition so= N and where 

Jk = 1 x : / ( x l ,  - x / 2 )  
/ I  f I2 

k = 0 ,  

k =  1, 

k = 2, 

The comparison between (1 )  and (9) gives 

For these values, the basic relation (1 1 )  reduces as 

2J,+, = -bs, - as,+I, r = 0 ,  1,2,  

Taking into account (12), one observes that this relation leads in a straightforward 
manner to the required equation (5). 

Finally let us mention that another new but more complicated recurrence relation 
for the sums s, can be easily obtained by making the observation that (Raghavacharyulu 
and Tekumalla 1972) 

s, = V;")(al, a,, . . . , a,) 

and that (Riordan 1958) 

for an arbitrary polynomial written in the form (6). Here V, and Y, are so-called 
generalised Lucas polynomials of second type and the well known Bell polynomials 
of the number theory respectively. The recurrence properties of these polynomials 
together with the values (8) of ai also supply useful recursion relations for the Newton 
sums of the GBP'S. 

4. Additional sum rules of zeros h, 

Let us consider an arbitrary polynomial P n ( x )  in the form ( 6 ) .  The so-called 
homogeneous product sums symmetric functions h, = h , ( x , ,  x2 ,  . . . , x , )  of the zeros of 
this polynomial are defined as follows (Riordan 1958) 
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The first few sums are given explicitly by 
n 

h l =  C Xir 
i -  I 

n n 
h2 = C x ;  + C xixj, 

, = I  i < j  

h3 = X :  + X : X ,  x,xjxk. 
i = l  i # j  i c j < k  

Here we will show that the product sums hr of the zeros of the GBP y , ( x ;  a, b) 
have the explicit formula 

where the symbols are the same as in (4). The first three sums are 

-bn 
(2n + a - 2 ) '  

h ,  = 

h 2 =  b2n[n(2n + a  -2) + a  -2]/2(2n + a  -2)2(2n + a  -3). 

b3n[4n4+4(a-2)n3 + ( a 2  +2a - 12)n2+(3a2-  16a +20)n +2(a -2)*] 
6(2n + a  -2)3(2n + a  -3)(2n + a  -4) 

h 3 = -  

Let us prove it. Since 

1 - U ~ X  + a , x 2 - a 3 x 3  +. , .=(  1 + h1x + h2x2+ h3x3 +. . . ) - I  

it can be shown that the product sums h, and the elementary symmetric functions 
a,, s = 1,2, . . . are related by 

where all the symbols are already known. To obtain (13) from (14) it is enough to 
take into account the values (8) of the ai of the GBPS. 

To end this section it is interesting to remark that the product sums h, can be 
expressed in terms of the generalised Lucas polynomials of the first type 
(Raghavacharyulu and Tekumalla 1972) as 

h r =  U!"?,-l(al, ~ 2 9 . .  ., an) 

and in terms of the Bell polynomials (Lavoie 1975) as 

1 
hr =A vr(flgl,f*gz,~. . , f , g r )  

with 1; = (- 1 ) j i !  and gi =Lai for i S n ; g, = 0 for i > n. The use of the known recursion 
relations of the U-polynomials (Raghavachrayulu and Tekumalla 1972, Williams 197 1) 
and of the Bell polynomials (Riordan 1958) together with (8) easily allows one to find 
recurrence formulae for the symmetric functions hr of the zeros of the GBPS. 
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5. Sums of Bessel polynomials 

When expanding a given function in terms of a system of orthogonal polynomials 
{vk(X); k = 0, 1,2, . . .} the question arises of how to evaluate partial sums of the type 
C ck7rk(x). Numerically this can be done by means of the Clenshaw's algorithm (Ng 
1968). However analytical expressions for such sums do not exist except for some 
classical sets of orthogonal polynomials (Hansen 198 1 ). 

Here we will show three different sets of certain sums of GBP'S the analytical solution 
of which are especially compact and simple. They are written in the form of three 
theorems. Some corollaries and proofs follow. 

Theorem 1. The GBP'S satisfy 

m-1 (2n + n + a )  
n = k  ( n  +1)!(2n + a  +2) c ( - l ) n + l  A',yn(x; a, b )  

-- - (-')m(2m + a  - l)""A&y,(x; a, b ) - O ' ( 2 k + a  - 1)'2k'A'kyk(x; a, b )  
m !  k!  

with 

v = k, n, m. 
( 2 r + a ) ( 2 r + a + 2 )  a - 2  1 ' 

Corollary. The ordinary Bessel polynomial y,, (x)  = y ,  (x ; 2,2) verify 

where 

U !! = U( U - 2)( U - 4) . , . 1 

Theorem 2. The GBP'S verify the relation 

with 

Corollary. The ordinary Bessel polynomials y ,  (x)  satisfy 
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Theorem 3. The GBP’S have the following property 

( x : a , b )  
C;Ylfl+s+l 

( 1 9 a )  

m - l  ( 4 n  +2s + a  + 1)(4n +2s + a )  x a - 2  
n = k  c 2n+s+1  ( i ;+ (4n+2s+a) (4n+2s+a+2)  

= CLY2m+s(X;a,b)- C;YZk+s(X; a, b ) ,  

with 

[ j (s  + a )  + 1]”-l[:(2s + a )  + 1 I y - l  

[& + 1 )  + 1],-,[:(2s + a  - 2 )  + 1 ] , - I  
CL= 

and s - 0  or 1.  

Corollary. The ordinary Bessel polynomials verify the following relation 

n = k  

Roo$ To prove these theorems we will use the following result (Hansen 1981). Let 
us consider the recursion relation 

for some function f n ( x )  where n takes integer values and the coefficients a,, b,, e, may 
ollowing sum rules for the functions f , ( x )  are fulfilled. also depend on x. The three 

( 1 )  

with 
r - l  

A,= n (2). 
n = O  

with 

with s = O  or 1, and 
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The comparison between ( 3 a )  and (21) gives 

a, = (n + 1)(2n + a  +2), 

6 , = ( 2 n + a + 1 ) [ ( 2 n + a ) ( 2 n + a + 2 ) ( x / b ) + a - 2 ] ,  

c, = - (n  +a) (2n  + a ) .  

One observes that 

A, = -(2r + a - l ) (2r )  r!  

a - 2  I-’ €3, = 
(2n+a)(2n  + a - 2 )  ’ 

(28) 
( s + a ) ( 2 s + a )  [ f ( s + a ) + l ] T - , [ ~ ( 2 S + a ) + l ] , _ ’  

(s + 1)(2s + a  +2) [$(s + 1 )  + 1],-,[$(2s + a  +2)  + l ] r - ’y  C 2 r + r  = 

where Pochhammer’s symbol ( z ) ,  = z(z  + 1) . . . (z + n - 1 )  has been used. 
Taking the values (25a, c )  and (26) to (22a) one easily obtains (1.5~’ b) of theorem 

1. Equation (16) of the corollary is found by replacing a = b = 2  in ( 1 5 ~ ) .  In an 
analogous way the relations (23a, b)  together with (25~1, b )  and (27) lead to (17~1, b )  
and (18) of theorem 2. Also (19~1, b) and (20) are obtained from (24a, b) together 
with (25a, b )  and (28). 
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